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We consider the possibility that the physical spacetime of a quantum particle 
may be regarded as a four-dimensional hypersurface locally embedded in eight- 
dimensional phase space. We show that, as a consequence, accelerated particles 
are seen to live in a curved spacetime, and, in the particular case of uniform 
acceleration, we are led to a generalization of the Rindler metric which implies, 
for a uniformly accelerated particle, a discrete energy spectrum. 

1. I N T R O D U C T I O N  

Recen t ly  the  poss ib i l i ty  has  been  cons ide red  tha t  one-par t i c le  q u a n t u m  
mechan ics  m a y  acqui re  a geomet r ic  in te rp re ta t ion  (Caian ie l lo ,  1980, 1983), 
t h rough  a quan t i za t ion  m o d e l  fo rmu la t ed  in a curved e igh t -d imens iona l  
m a n i f o l d  M s ,  with coord ina te s  x A =  ( x ~ , ( h / m c ) : ~ ' ) ,  where  x ~ is the  usual  
pos i t i on  four-vec tor ,  and  ~ = d x ' / d s  is the  re la t ivis t ic  four-ve loc i ty  (con- 
vent ions :  A, B , . . . =  1 , . . . ,  8; /~, v , . . . =  1 . . . .  ,4 ) .  

We  do  not  in tend  to d i s c u s s h e r e  in deta i l  this m o d e l  [many  fo rmal  as 
well  as phys ica l  aspects  o f  which  have been  ana lyzed  in prev ious  pape r s  
(Ca ian ie l lo ,  1980, 1981, 1983; Ca ian ie l lo  and  Vilasi,  1983)]; we only  recal l  
tha t  in this  contex t  the  p o s i t i o n - m o m e n t u m  c o m m u t a t i o n  rules,  [x, p ]  = ih, 
are r e p r o d u c e d  by  represen t ing  these ope ra to r s  as covar ian t  der ivat ives  wi th  
an a p p r o p r i a t e  connec t ion  in the  e igh t -d imens iona l  man i fo ld  Ms.  In  this 
way  quan t i za t ion  is geomet r i ca l ly  u n d e r s t o o d  as a consequence  o f  curva ture  
in phase  space .  
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Of the various consequences of this geometric approach (Caianiello et 
al., 1982a; Scarpetta, 1984; Guz and Scarpetta, 1986), we wish to focus our 
attention on the fact that the relativistic spacetime interval, ds 2= 
rl,~ dx ~ dx ~, where ~7 = d i a g ( - - - + )  is the Minkowski metric, must be 
replaced by a more general physical invariant (see also Brandt, 1984, 1986), 
representing the infinitesimal distance in Ms, i.e., dr2=gaB dx a dx B. 
Assuming for gas ,  in the absence of gravity, the simplest form gas = ~ |  
r/,~ [in agreement with the uncertainty principle (Caianiello, 1984), and 
also with very general arguments based on entropy and information theory 
(Caianiello, 1986)], we are led then to consider, as the fundamental 
infinitesimal interval for a particle, the following eight-dimensional line 
element: 

~2 
dr  2= dx ~ dX~ + m2 c---- ~ dye ~ dYc. (1.1) 

(Here we have written explicitly the dimensional constants, to stress the 
fact that dr 2 reduces to the usual four-dimensional distance in the classical 
macroscopic limit h--> 0; henceforth we shall use, however, natural units 
h = c = l . )  

Starting from the expression (1.1), one could try to formulate an 
eight-dimensional generalization of special relativity (Scarpetta, 1984, and 
general relativity (Brandt, 1984, 1986, 1987): our present aim, however, is 
more modest. If we accept the hypothesis that the microscopic spacetime 
should be regarded as a four-dimensional hypersurface locally embedded 
in the larger manifold M8, as the previously quoted geometric quantization 
scheme suggests, it follows that the metric of the physical spacetime V4 is 
locally induced by the generalized line element (1.1) of Ms, through the 
parametric equations which govern the embedding of V4 into Ms. We 
propose to show in this paper that accelerated particles (d~ " # 0 )  are 
associated to four-dimensional hypersurfaces whose curvature is in general 
nonvanishing: at this semiclassical level, therefore, the effective spacetime 
geometry experienced by interacting particles is curved. 

This curvature, induced not by matter through conventional Einstein 
equations, but by motion in momen tum space, as shown in Section 2, vanishes 
in the limit h ~0;  it represents thus a quantum correction to the given 
background geometry (always flat throughout this paper) experienced in 
four dimensions by classical macroscopic test bodies. The crucial point is 
that, as a consequence, particles differently affected by external interactions, 
and therefore with different trajectories in momentum space, are seen to 
live in differentfour-dimensionalgeometries: this prospective realizes, already 
at a semiclassical level, the old conjecture that in a quantum theory of 
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gravity the spacetime metric should be observer dependent (Gibbons and 
Hawking, 1977). 

The simplest case one may consider, i.e., the case of uniformly acceler- 
ated particles, will be introduced as an example in Section 3. We obtain 
then, according to this scheme, corrections to the geometry of the Rindler 
manifold which induce curvature and shift the boundary of the Rindler 
wedge, thus suggesting modifications of the well-known relation between 
acceleration and temperature (Davies, 1975; Unruh, 1976). 

The main results of this paper, together with the possibility of further 
applications of this geometric approach to quantization, will be briefly 
discussed in Section 4. 

2. LOCAL ISOMETRIC EMBEDDING OF SPACETIME 
INTO PHASE SPACE 

If we regard the spacetime V4, at the microscopic level, as a four- 
dimensional hypersurface locally embedded in Ms, in order to obtain the 
four-dimensional metric [induced by (1.1)] which determines its intrinsic 
geometry we must give the parametric equations governing its embedding 
(i.e., representing V4 as a submanifold of Ms), that is, x a =  x A ( ~ ) ,  where 
x A are coordinates on M8 and ~ on V4. 

To this purpose, first we observe that, according to the generalized 
invariant dz defined by the eight-dimensional line element (1.1), the space- 
time intervals ds 2= dx~dx~ are no longer invariant, but depend on 
the trajectory in momentum space, that is, on the choice of ~"(s) (just 
as in special relativity the time intervals dt lose their absolute meaning 
and become dependent on the curve xi(t) which describes motion in 
three-dimensional space). For any given trajectory ~ ( s )  we have in fact 
dYc ~= 5~ ~ ds and we obtain, from equation (1.1), 

( (2.1) dr2= ds2\ l -  rn2 ] 

where 1 12= is the squared length of the (spacelike) relativistic 
acceleration four-vector. As dr is now the invariant interval, motions with 
different accelerations clearly correspond to different values of ds. Along a 
classical path, defined by x~(s) and ~"(s), we have therefore a generalized 
definition of the invariant proper time, namely 

d'r=dt(1-lv[2) ~/2 1 me ] (2.2) 

where v i= dxi/dt. 
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This argument can be applied to a classical observer, whose motion is 
represented by a well-defined trajectory; for a quantum particle, however, 
the notion of trajectory is meaningless, since position and momentum cannot 
be simultaneously defined with arbitrary high precision. The motion of a 
quantum particle therefore cannot be geometrically represented by a 
unidimensional world line x"(s):  we need, instead, to consider all the 
extended four-dimensional portions of spacetime over which the probability 
of finding the particle is nonvanishing. As a consequence, we have to specify 
a velocity distribution not along a unidimensional trajectory ~" =~" ( s ) ,  
but over the corresponding extended region, which in general spreads out 
to cover the whole spacetime: in this case a velocity field ~ = ~"(~:~) defined 
over V4 characterizes the motion of the particle. 

The four equations ~ " =  ~(sc~), together with those x ~'= x~(s c~) that 
relate the coordinates x"  of M8 to the coordinates s c" chosen to parametrize 
V4, constitute the set of eight parametric equations x A = xA(~ ~') needed to 
represent V4 as a hypersurface in Ms; given any velocity field ~(~:~) over 
V4, corresponding to some particular dynamical situation, its embedding 
in phase space is thus determined. 

Once the parametric equations xA(~) are specified, we have 

d x  A = o x A ( ~ )  d ~  

and the spacetime metric g~(~:), locally induced on V4 by the line element 
(1.1) of Ms, i.e., such that 

dr 2 = gAB dXA d x B  = gtxv(~) de  tz d~ v (2.3) 

is then given by 

oxa OXB (OX ~ Ox~ 1 OJc '~ OYc t3 ) 
g,av(()  = gAB O~ ~ o~v -- no~,~ \ 0 ~  (~, ~- m 2 O( ~ O~ ~_ (2.4) 

Even starting from a phase space M8 with a flat metric, in the case of 
interacting particles, characterized by a velocity field 2" not trivially constant 
(02"/0~ ~ # 0), we have then an effective four-dimensional geometry which, 
in general, is curved [the curvature tensor corresponding to the metric (2.4) 
can be expressed, for instance, in terms of the well-known Gauss equation; 
see Eisenhart (1949)]. 

The effective spacetime curvature at the microscopic level and in the 
quantum regime is not absolute, therefore, but particle dependent: particles 
with different interactions are in general characterized by different velocity 
fields 2~" (~:~), so that the intrinsic four-dimensional geometry they experience 
is described by different metric tensors. 
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In the classical limit h / m c ~ O  the quantum contributions to the 
geometry vanish and the second term in the parentheses of equation 
(2.4) disappears; in this case the effective metric g,~ may differ from the 
Minkowski one at most by a reparametrization, x " ~ x " ( s r ~ ) ,  and the 
intrinsic fiat nature of the macroscopic geometry thus remains unchanged. 

3. A SIMPLE EXAMPLE: THE RINDLER VELOCITY FIELD 

In the previous section we saw that, if  the physical spacetime V 4 is 
regarded as a hypersurface in M8 (i.e., in a manifold whose coordinates 
represent positions and velocities), the intrinsic metric on V4 depends on 
the velocity field we define on it; that is, on the set of classical trajectories 
we use to cover the spacetime in order to describe motion at a microscopic 
level. 

A Constant velocity field dE"=  0 (corresponding to a free particle) 
obviously gives a trivial embedding which preserves spacetime flatness; in 
order to obtain quantum corrections to the microscopic curvature, we 
have to consider velocity fields with nonvanishing acceleration. The simplest 
example is the motion with constant proper acceleration: we consider then 
the portion of spacetime spanned by the world lines of uniformly accelerated 
observers 

1 1 
x = -- cosh as ,  t = -- sinh a s  (3.1) 

o/ ot 

obtained by varying a and s according to the Rindler parametrization 
s r = 1 / a ,  .7 = a s  [in what follows we work, for simplicity, with a bidimen- 
sional spacetime, parametrized by (s r, .7), so that phase space is only four- 
dimensional]. The corresponding velocity field is 

= sinh *7, i = cosh .7 (3.2) 

and the parametric equations for the embedding in M8 are then 

x"(s  r, *7) = (~: cosh *7, ~ sinh .7), ~"(~:, *7) = (sinh *7, cosh *7) (3.3) 

From equations (2.3) and (2.4) we obtain therefore that the Rindler line 
element d s  2 = ~2 d.72 _ d~:2 is generalized as follows: 

d~ -2 = (s c2 - m -2) d*72- d~ 2 (3.4) 

It should be mentioned that this quantum correction to the usual Rindler 
metric, though apparently very simple, leads to some interesting physical 
consequences. The first point to be stressed is that the horizon of this 
manifold is now given by ~: = m -~, instead of ~: = 0; it is then represented 
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in the (x, t) plane not by the null rays x 2 = t 2, but by the "maximal acceler- 
ation hyperbola" x 2 -  t 2 = rn-2, corresponding to the world line of a uni- 
formly accelerated particle with constant proper  acceleration a = m [see 
equation (3.1)]. 

This is in agreement with the suggestion, previously discussed with 
different arguments (Caianiello, 1981, 1984; Caianiello et al., 1982a), that 
in the context of  quantum physics a natural limit should exist for the proper 
acceleration of  a particle, fixed by its mass. Moreover, it is interesting to 
note that the replacement of  the light cone by a hyperbola as the boundary 
of the Rindler spacetime provides automatically, as a consequence of  the 
quantum corrections, the formal horizon regularization recently introduced 
ad hoc to quantize a string in an accelerated frame (De Vega and Sanchez, 
1988). 

Another important difference from the usual Rindler case is that the 
metric (3.4) describes a curved manifold. The nonvanishing scalar curvature 
is given by 

2 ( 2 m - 2 ) - 2  R = - - -  7 ~ -  (3.5) 
m 

and diverges for ~: = m -1. Therefore in this case the horizon is a true physical 
curvature singularity and not just a removable coordinate singularity. 

In order to investigate whether it is still possible to associate a tem- 
perature to an accelerated observer, one has to consider the vacuum state 
of  a quantum field in the background metric (3.4). Even in first quantization, 
however, there are differences with respect to the Rindler manifold. Consider 
in fact the following coordinate transformation: 

ms ~ = cosh p (p -> 0), m~: = - c o s h  p (p -< 0) (3.6) 

which changes the line element (3.4) in the conformally flat form 

dr2 = ~22 sinh2 p( drl 2" dP 2) (3.7) 

The Kle in-Gordon equation for a scalar particle of mass m, minimally 
coupled to gravity, becomes in this metric (0 02 ) 

~-~20p2/-sinh2p ~b(rl, P) =0  (3.8) 

Looking for solutions of  the form ~b = 0(P)  exp(-i(o~),  we are led to a 
Schr6dinger-like equation for ~0(p), with an effective potential which tends 
to infinity in the limits p = :koe: in this manifold we thus have a discrete 
energy spectrum, unlike the case of the Rindler spacetime. 
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To emphasize the differences from the continuum case, we can consider 
the high-acceleration regime a --> m, which means p << 1 [see equation (3.6)]. 
By expanding the effective potential near the origin, one obtains that, to 
first order in p2, equation (3.8) coincides formally with the energy eigenvalue 
equation of a harmonic oscillator. Therefore in this approximation the 
allowed value of oJ are ~o] = 2n + 1, with n = 0, 1, 2 , . . . ,  and the energy 
spectrum for a local observer with proper acceleration a, i.e., E,  = oJ,/x/~44, 
is then given, in the limit a --> m, by 

[ rn 2._.____~ ~ 
= .  n + (3.9) E, L m - a  

[from equation (3.7) we have in fact, in the approximation considered, 
g44•p2m -2, and, from (3.6), p/2~ ma-l-1]. 

4. CONCLUDING REMARKS 

In this paper we started from the hypothesis that, at a microscopic 
level, the four-dimensional spacetime interval should be replaced by a 
generalized invariant interval defined in eight-dimensional phase space. The 
quantum corrections to the macroscopic geometry obtained in this context 
are weighted by the mass of the particle considered, m -2 [see equation 
(2.4)], and then should not be, in general, negligible like the usual general 
relativistic quantum effects, which, being proportional to the Newton con- 
stant, are weighted by the Planck mass, Mp2<< m -2. 

Considering in particular quantum corrections to the Rindler metric, 
we have shown that uniformly accelerated particles should be characterized 
by a discrete energy spectrum in which, in the high-acceleration approxima- 
tion (a ~ m), the levels corresponding to the square of the proper energy 
are equispaced, i.e., E 2 oc n (a similar behavior is also typical of the mass 
spectrum in dual resonance models and string theory (Rebbi, 1974), and 
was also obtained, though in a different context, in some of our previous 
work (Caianiello and Vilasi, 1981; Caianiello et aL, 1982b). 

The main result of the geometric model we have considered is that the 
intrinsic spacetime geometry, in the quantum regime, is determined by the 
velocity field which describes its embedding in phase space. The microscopic 
spacetime intervals, therefore, are not absolute, but particle dependent: 
particles which are acted on by different interactions experience different 
acceleration fields, and thus are seen, by an external observer, as embedded 
in different four-dimensional geometries. 

Among the possible consequences of this effect, we mention the possi- 
bility of providing a physical, and as formal, justification to geometric 
models for the confining aspects of strong interactions (Salam and Strathdee, 
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1978) and for the hadronization process (Gasperini, 1987a; Bediaga et al., 
1988, 1989), which are based on the representation of hadronic bags as 
"microuniverses." In fact, if the spacetime curvature, on a microscopic 
scale, is determined by acceleration, one can easily understand (Caianiello 
et al., 1988) [without introducing new interactions with ad hoc coupling 
constants as in the work of Salam and Strathdee (1978)], why, within 
hadrons, a quark, being accelerated by color fields, is seen to interact with 
a curved geometry, while a lepton, which is not affected by strong interac- 
tions, lives in a fiat spacetime and can escape freely. [The possibility of 
considering acceleration as the source of curvature for the hadronic bags 
was also considered in a previous work (Gasperini, 1988), but there inter- 
preted as a thermal effect.] 

Finally, we observe that, throughout this paper, we have discussed 
quantum corrections to the four-dimensional metric for particles accelerated 
by external fields in a fiat background geometry. By using the same procedure 
we could as well consider, however, particles accelerated by gravity, i.e., 
by the geometry of a curved four-dimensional manifold, for example, 
according to the equations of geodesic deviation (Gasperini, 1987b). In this 
case the embedding of spacetime into phase space, determined by the 
velocity field corresponding to the gravity-induced trajectories, provides 
corrections to the given metric which can be interpreted as a "quantum 
back reaction," on the initial geometry, determined by the motion of particles 
in its background. 
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